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Abstract

A method is described for computing cold insertion loss as well as
power-handling capabilities of a helical radio-frequency line. The helically-
conducting-cylinder model in free space is considered first. Computations are
then extended to account for the presence of an outer, coaxial, uniformly con-
ducting cylinder.

Attenuation

An expression for the loss due to imperfect conductivity will be
derived by applying the helically-conducting-sheet model, which is shown sur-
rounded by a coaxial cylinder in Figure 1, to a helix. The power flow along
the helix is given by

PT = PO exp (-2X2),

where PT is the transmitted power, P

~
is the initial input power, & is the

al;tenuation in nepers per unit lengt , and z is the axial distance from the
input Of the h@liX. This can be expressed as

1 dpT
4=-——

2pT dz

The quantity PT is given by Piercel as

(1)

(2)

The only factor remaining to be evaluated is dPT/dz, which may be
obtained by considering a cylindrical element of the helically conducting sheet.
The area of such an element of length dz is ma dz, where a is the radius of
the cylinder. If PL is the power loss per unit area, then the total loss over
the element is

dPT = ~a PL dz (3)

The power loss per unit area PL is found by using the customary method
of’ computing attenuation of radio-frequency lines as follows. If E and H are the
el.ecbric and magnetic fields, respectively, n is a unit vector normal to th@ sur-
f=lce of the sheet, and Rs is the skin-gt’feet resistance, E = Rs(n x H). Hence> Ez =
R~He; E@ = - RsHz. The power flow, given by the Poynting vector, becomes
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PL E 1/2 (E X H) = (1/2) R~ (IH612 + IHzI 2, (4)

where R~ is t
!$

skin-effect resistance. The skin-effect resistance is given by
R~ = (m KOfp) 2 where yO is the permeability of free space and p is the resis-
tivity of the helix material (see Figure 2 for specific values). The field
solutions from Pierce2 for the helically conducting sheet in free space are used
to evaluate (4) by analysis of the fields both inside and outside the helix
structure. Inside the helix

Hz = -j
B y Io(ya)

(P/C) l/2 1 Il(ya)

Outside the helix

B k Io(Ya)He=-j _-—

(P/6)1/2 y ~(Ya)

B y IO(ya)
Hz=j —-—

(P/t) l/2 k K~(ya)

1
— 10(YP) ●

cot p

sum of the inside and outsideThe total loss per unit area, the
losses, becomes

B2RS [0k21 1
pL = (I~2K02+Io2K12) -.

2.88 xlO%# Y

– f~ -], (5)
$ cot2 ~ k

where the argument of all the Bessel f%ctions is ya.

Solving for O( , we obtain

m (ya)4F3(ya)
d=-- pL .

a B2 (ka) (pa)

Combining (5)- and (6)

da (Ya)4 F3(ya)
—=

[ }
112(w) Ko2(ya) + 102(ya) K12(ya)

R9 2~120)2 (ka) (pa)

(6)

(7)

In Figure 2 sre plotted the graphs of ~ a/Ils versus ya, with cot ~ as parameter.
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Power Hand3ing

With a satisfactory method of computing the attenuation of a helix
having been given, the renaintng problem of power-handling capabilities will be
solved.

For a helix struc$ure operating as a radio-frequenoy transmission line
in a vacuum, where conduction losses are insignificant, the. initial input power
:PQ is

PO =Prf+P~$ (8)

where PT is the total transmitted power and ~ is the total power radiated from
the structure.

The total power radiated from a helix structure can be written as

pR = ~azW s (9)

where a is the helix radiuss z is the axial lengths and W 3s the power radiated
;per unit area, which is a function of temperature and the helix material as well
as of surface conditions. From (1) and Figure 29 it can be shown that for any
given helix structure

(lo)

where k is a function of ya and cot ~. Substituting (10) in (1), the total
transmitted power is

pT = P. exp (-2kRsz/a) ~ (11)

and substituting (9) and (lI.) in (8)s we obtain

p. = 27’razW

l-exp(-2kR~z/a) ‘
(12A)

!Now assuming that 2kRsz/a is small compared to unity as is true for all. struc-
tures considered here, the input power P. can be expressed as

The

7Ta2kJ
P()=—

kR~

power radiated per unit area W is given by

(12B)

W=eta-(#- T04), watts per square centimeter, (13)

where et is the total emissivity of the helix material, a is the StefawBoltzmann
constants T is the helix temperature in degrees Kelvin, and To is the ambient
temperature.

A graph of PORs/a2et u (’4#-T04) versus ya is plotted for varimm
values of cot ~ in Figure 3.
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Effect of Outer, Coaxial, Conducting Cylinder

In practice, the occasion may arise for the use of a-helix inside a
coaxial, uniformly conducting cylinder as a radio-frequency transmission line
(see F@urel). Since the presence of the outer cylinder will modify the field
components with respect to those of a helix in free space, it is to be expected
that the degree of attenuation and the power-handling capability would also be
altered. Expressions for the field components are given in Reference 3. men
these are substituted into (4), the attenuation factor, corresponding to (’7)9 for
the case where the helic~ly conducting sheet and surrounding cylinder are of the
same material and at the same temperature, becomes

OJa= (ya)4F3(ya,yb)

Rs 27?_(120)2 (ka)(#a)

+
Fll(Ya) Ko(Yb) + K,

o{k 2 112(ya)
Io2(ya) ~ —

102(ya)

‘@)I&fb)12 +[Il(yb) K(@) +I&fb) Kl(yb)’ 21“LIo(ya) Ko(yb)- ~(ya)Io(yb)J LIo(ya) ~(yb)-~(ya)Io(yb)

O-4)

[ 1)/Il(yb) Ko(yb) +I~(yb) Kl(yb) 2

+ Il(ya) Kl(yb) -Kl(ya) Il(yb)

where b is the inside radius of the cylinder. A graph of this’ f%nction for a
ratio of cylinder-to-helix radius b/a equal to 2 is shown in Figure 4. A
corresponding graph for power handling is shown in Figure 5.

By comparing Figure 3with Figure 6, it maybe noted that the effect of
the outer, uniformly conducting cylinder of diameter twice the helix diameter

seems to be to increase the power-handling capability slightly.

The above computations of power-handling capability were made for a
helix without dielectric supports. !I%is approximation has some justification,
since although dielectric support material may give added loss, the dielectric
supports will give more surface area for heat radiation.

Conclusions

A method has been described for calculating the cold insertion loss
as well as the power-handling capabilities of a helix structure with or without
an outer,

1. J. R.
New York;

unifo%ly conducti&, ~oaxial cylinder. “
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Glossan of symbols

modified Bessel Function of
modified Bessel Function of
modified Bessel Function of
modified Bessel Function of
Uy’v

4
UC
B- ~2

first kind and zero order
second kind and zero order
first kind and first order
second kind and first order

>adius of the helically conducting cylinder
radius of the outer conducting cylinder

axial phase velocity
velocity of light
radian frequency
angle made by the helical. direction with a circumference

F(ya) =-impedance- function. See references 1 and 3
F(ya,yb) = impedance function. See reference 3.

Figure 1- Model helix. a is the mean
radius of the helically conducting

~’”]

cylindrical surface, b is the inner
radius of the uniformly conducting,
coaxial, cylindrical sheet surrounding
the helix, andY’ is the angle defining
the direction of conduction along-the
helix.
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Figure 2- Helix attenuation due to conductor losses OL@=, where ~-
attenuation in nepers

T
r unit lengbh of radius$ a = e “

! i%
mean radius,

ad R$ = 2.61 x l@7f1 2 ohms for coppers 4+706 x lm f ohms for

tungsten, and i!+.’?l+l x l@7fl/2 ohms for molybdenum.
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Figure 3 - Power-handling capability. p&S/a2~d#-To4) plotted against
*a. PO = input power in watts, Rs ~ skin-effect resistance in ohms, a =

helti mean radius in centimeters, et = total emissivity, T = helix temper-
ature in Kelvin scale, To = ambient temperature in Kelvin scale, and a =
5.6’7 x l&12 watts per square centimeter per degree-k Kelvin.
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Figure 4- Helix attenuation due to Figure 5- Power-handling capability

conductor losses for the case where as limited by the conductor losses
the helically conciucttig sheet is and radiation from the helically

surrounded by an outer, uniformly conducting sheet.
conducting, co@al cylinder of the
same material. with a diameter twice
that of the sheet and at the same
temperature.
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