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Abstract

A method is described for computing cold insertion loss as well as
power-handling capabilities of a helical radio-frequency line, The helically-
conducting-cylinder model in free space is considered first., Computations are

then extended to account for the presence of an outer, coaxial, uniformly con-
ducting cylinder,

Attemuation

An expression for the loss due to imperfect conductivity will be
derived by applying the helically-conducting-sheet model, which is shown sur-

rounded by a coaxial cylinder in Figure 1, to a helix, The power flow along
the helix is given by

PT = PO exp ("20(3),
where Pp i1s the transamitted power, P8 is the initial input power, o4 is the
th,

at,tenuation in nepers per unit leng and z 1is the axial distance from the
input of the helix, This can be expressed as

1 4p
&= T (1)
2P, dz

The quantity Pp is given by Piercel as

o2 k1
Pp = B (2)
! v4 F3(va)

The only factor remaining to be evaluated is dPT/dz, vhich may be
obtained by considering a cylindrical element of the helically conducting sheet.
The area of such an element of length dz is 2ma dz, where a is the radius of

the cylinder, If Py, is the power loss per unit area, then the total loss over
the element 1s

dP,, = 2rma P} dz (3)

T
The power loss per unit area P is found by using the customary method

of computing attenuation of radio-frequency lines as follows, If E and H are the

elecbric and magnetic fields, respectively, n is a unit vector normal to the sur-

face of the sheet, and Rg is the skin-effect resistance, E = Rs(n x H). Hence, Eg =

ReHg; Eg = = RgHz. The power flow, given by the Poynting vector, becomes
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PL = 1/2 (Ex H) = (1/2) Ry ([Be|? + |H,|) (4)

where Ry is t% gkin-effect resistance, The skin-effect resistance is given by
Rg = (T pupfp) 2 yhere po is the permeability of free space and p is the resis-
tivity of the helix material (see Figure 2 for specific values), The field
solutions from Pierce? for the helically conducting sheet in free space are used
to evaluate (4) by analysis of the fields both inside and outside the helix
structure, Inside the helix

B

=j ——% £ nim,
o /612 v '
B Y Io(Ya.)
Hy, = - - I.(yr) -
? j(11/6)1/2 k Ij(ya) cot ¢ o
Outside the helix
B k Ip(ys)
Hg = -] - Ky (vyr)
T W2 v xva)
B y Io(ya) 1
H, = - (yr) .
i (M/G)l/z k K;(va) cot ¥ o

The total loss per unit area, the sum of the inside and ocutside
losses, becomes :

2. 2 2 2

2,88 x 10472 v/ KR eot? @ \k| 1,%K?
where the argument of all the Bessel functions is vya.
Solving for o, we obtain

<=1 (va)4F3(ya) p

a B? (ka)(Ba) ©

Combining (5)- and (6)
oa (va)*  F3(ya)

Rg 2m(120)2 (ka)(Ba) [Il (ya) Kg“(ya) + Ip®(ya) K3 (Ya)}

x [(l_c)z =B G To(va) ] . (7)
Y| X2(va) k cot? ¥ T;3(va) Kp3(va)

In Figure 2 are plotted the graphs of oka/Rg versus va, with cot ¢/ as parameter,
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Power Handling

With a satisfactory method of computing the attenuation of a helix

having been given, the remaining problem of power-handling capabilities will be
solved.

For a helix structure operating as a radio-frequency transmission line
in a vacuum, where conduction losses are ingignificant, the initial input power

PO 1s
PO = PT + PR ’ (8)

where Pp is the total transmitted power and Pp is the total power radiated from
the structure,

The total power radiated from a helix gtructure can be written asz
PR = 2mazW 9 (9)

where a is the helix radius, z is the axial length, and W Is the power radiated
per unit area, which is a function of temperature and the helix materisl as well

as of surface conditions. From (1) and Figure 2, it can be shown that for any
given helix structure

kR
== (10)

where k is a function of va and cot ¥ . Substituting (10) in (1), the total
transmitted power is

Pr = Py exp (-2kRgz/a) , (11)
and substituting (9) and (11) in (8), we obtain

Pg = 2mazi . (124)
l-exp(~2kRqz/2)

Now assuming that 2kRgz/a is small compared to unity as is true for all struc-
‘tures considered here, the input power Py can be expressed as

2
Ta“W
Pq = (12B)
0" kRrq
The power radiated per unit area W is given by
W=et a'(fl'l+ - TOA), watts per square centimeter, (13)

where et is the total emissivity of the helix material, ¢ is the Stefan-Boltzmann

constant, T is the helix temperature in degrees Kelvin, and Tp is the ambient
temperature, )

A graph of PoRs/hzet o'(TA-TO4) versus va is plotted for various
values of cot ¥ in Figure 3.
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Effect of Outer, Coaxisl, Conducting Cylinder

In practice, the occasion may arise for the use of a helix inside a
coaxial, uniformly conducting cylinder as a radio-frequency transmission line
(see Figure 1). Since the presence of the outer cylinder will modify the field
components with respect to those of a helix in free space, it is to be expected
that the degree of attenmuation and the power-handling capability would also be
altered. Expressions for the field components are given in Reference 3. When
these are substituted into (4), the attemuation factor, corresponding to (7), for
the case where the helically conducting sheet and surrounding cylinder are of the
same material and at the same temperature, becomes

o*e - _(ya)4F3(va,vb) 2.\ (XY ) 112 (ya)
R, 2m120)2 (ka)(pa) | © (Ya)(v> Io2(va)

{_I;_l_(va) Ko(vb) + Ky (va) Io(vb>] 2 +[I_1((Yb) Ko(1b) + To(vb) Kl(vb)]z
Io(ya) Ky(yb) - Ky(va) In(yb) Io(va) Ko(yb) - Ko(ya) Io(yb)

+(1)2 Ip3(va) iIQZ(Ya) . [Tolya) Ky(vb) + Ko(ya) Ty(vb) ] ()
k) eot? & (1%(va) | Iy(va) Ky(¥b) - Kplra) Ty(vd)_
. (I3 (Yb) Ko(¥b) + Io(¥b) Ky(¥b)] 2
| I3 (ya) Xy (¥b) - Kp(ya) I3(¥b) |

where b is the inside radius of the cylinder., A graph of this function for a
ratio of cylinder-to-helix radius b/a equal to 2 is shown in Figure 4. A
corresponding graph for power handling is shown in Figure 5.

By comparing Figure 3 with Figure 6, it may be noted that the effect of
the outer, uniformly conducting cylinder of diameter twice the helix diameter
seems to be to increase the power-handling capability slightly,

The above computations of power-handling capability were made for a
helix without dielectric supports. This approximation has some justification,
since although dielectric support material may give added loss, the dielectric
supports will give more surface area for heat radiation.

Conclusions

A method has been described for calculating the cold lnsertion loss
as well as the power-handling capabilities of a helix structure with or without
~ an outer, uniformly conducting, coaxial cylinder,

References

1. J. R, Pierce, Traveling-Wave Tubes, D. Van Nostrand Company, New York,
New York; 1950: Appendix 2,

2. Page 231 of reference 1.

36



ao/Rg

0.07

0086

0.05

0.04

0.03

0.02

0.0t

3. J. H, Bryant, "Wave Properties of Helical Conductors,” to be published in

‘Electrical Communication.

#owonououonowouonon o

HHRE 0 4 o e L NN

Pt Tamn )

Glossary of Symbols

modified Bessel Function of first kind and zero order
modified Bessel Function of second kind and zero order
modified Bessel Function of first kind and first order
modified Bessel Function of second kind and first order
w/v

a%b

B2 - ¥

radius of the helically conducting cylinder

radius of the outer conducting cylinder

axial phase veloclity

velocity of light

radian frequency

angle made by the helical direction with a circumference

va) = impedance function, See references 1 and 3
Ya,Yb) = impedance function, See reference 3.

Figure 1 ~ Model helix.

a is the mean
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e cylindrical surface, b is the inner
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Figure 2 ~ Helix attenuation due to conductor losses oa/Rg, where «=

attenuation in nepers
and Rg = 2.61 x 10~-7f

ohms for copper, 4.706 x 10~

tungsten, and 4.741 x 10~7£1/2 ohms for molybdenum.
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Figure 3 = Power-handling capability. PdRs/azet G(TAiToh) plotted against
7a. P, = input power in watts, R, = skin-effect resistance in ohms, a =
helix mean radius in centimeters, ey = total emissivity, T « helix temper-
ature in Kelvin scale, T, = ambient temperature in Kelvin scale, and o =
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Figure 4 - Helix attenuation due to
conductor losses for the case where
the helically conducting sheet is
surrounded by an outer, uniformly
conducting, coaxial cylinder of the
same material with a didmeter twice
that of the sheet and at the same
temperature.
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Figure 5 = Power-handling capability
as limited by the conductor losses

and radiation from the helically

conducting sheet.



